

Hydrogen and the Low-Carbon Future: Opportunities for Energy Transition in the Intermountain West Mohamed Mehana and Eric Guiltinan

Presented to I-WEST: August 16th, 2023

LA-UR 23- 29354

Acknowledgment

Fangxuan Chen, Joseph Heimerl, Mohamed Malki, Shaowen Mao, Martin Ma, Bailian Chen, Rajesh Pawar, Jolante van Wijk, Chelsea Neil, Michael Gross, Gaoxue Wang, Bijay K C, Luke Frash, Siddarth Komini Babu, Prakash Purswani, Ruyi Zheng, Tim German

The US. DOE - Intermountain West Energy Sustainability & Transitions LANL Technology, Evaluation, and Demonstration Program LANL-LDRD Mission Foundation Research Program

LANL-LDRD Directed Research Program

H2 101 H2 Geologic Storage Storage Storage

Storage Optimization

Why Hydrogen?

Emission-free energy source that can be used for energy storage and decarbonizing transportation.

Energy Transition

Throughout history there have been several energy transitions.

H2 101

Storage Optimization

* Burning wood and other organic matter

H2 Geologic Storage

** Wind, solar, geothermal and modern biofuels, includes nuclear

Data Source: Energy Outlook, BP, 2020

Where Does Hydrogen Come From?

Hydrogen is the one of the most abundant elements but H₂ is relatively scarce.

- Grey Fossil Fuel without CCS
- Blue Fossil Fuel with Carbon Capture and Storage (CCS)
- Green Excess Renewable Energy
- Pink Excess Nuclear Power

Palo Verde Generation Station Image credit: https://www.paloverde.com

Hydrogen Economy

Production Cost: Grey ~ \$1.5/kg Green ~ \$5/kg

Production

~75% efficient

Transport & Storage

H2 Geologic Storage

~ 10% loss

Storage Optimization

Utilization: ~60% efficient

H2 Production

1.25 Mgal Capacity 1.3 quadrillion insulating glass beads credit: www.nasa.gov

Bipartisan Infrastructure Law and DOE Earthshots

Bipartisan Infrastructure Law - Hydrogen Highlights

- Covers \$9.5B for clean hydrogen:
 - \$8B for at least four regional clean hydrogen hubs
 - \$1B for electrolysis research, development, demonstration, commercialization, and deployment
 - \$500M for clean hydrogen technology manufacturing and recycling R&D

President Biden Signs the Bipartisan Infrastructure Bill on November 15, 2021. Photo Credit: Kenny Holston/Getty Images

• Aligns with Hydrogen Shot priorities by directing work to reduce the cost of clean hydrogen to \$2 per kilogram by 2026

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Requires developing a National Hydrogen Strategy and Roadmap

"Clean hydrogen is key to cleaning up American manufacturing... we're seeking feedback from the American public on how to make scaling-up this clean, affordable energy source a reality."

– Secretary Granholm

J.S. DEPARTMENT OF ENERGY

H2 Production

Energy Curtailment

H2 101

Source: California Independent Service Operator

zation H2 Production

Energy Curtailment

H2 101

Green Hydrogen paired with Geologic Storage

- Requirement for seasonal storage (energy mismatch)
- Batteries and surface tanks have storage limitations
- Geologic storage in the subsurface can achieve H₂ at scale

Types of Storage

H2 101

H2 Geologic Storage

Source: Edlmann (2021)

Storage Optimization

Source: Buscheck et al., 2023

H2 Geologic Storage

Storage Optimization

H2 Production

Geologic H₂ storage

Geological Type	Storage Capacity	Initial Cost	Cyclic Cost	Chemical conversion rate	Cushion gas requirement	Leakage risks	Usability purpose
Salt cavern	Low	High	Low	Low	Low	Low	Frequent
Saline aquifer	High	Average	Average	High	High	High	Seasonal
Depleted gas reservoirs	High	Average	Average	Average	Average	High	Seasonal

Saline Aquifer

Depleted Reservoirs

Muhammed et al., 2021.

8/17/23 12

Hydrogen Projects at Los Alamos

Hydrogen Storage in Porous Rocks

Hydrogen Storage in Bedded Salt Caverns

Hydrogen Economy in the I-WEST

Fuel Cell and Electrolyzer Research

Million Mile Fuel Truck

H₂ storage in depleted gas reservoirs

H2 Geologic Storage

Assumptions:

- Normal pressure and temperature gradients
- The cumulative production amount of natural gas under reservoir conditions is equal to the volume of stored H₂ in reservoir conditions;
- Cushion gas: H₂, 50% of total volume.

Working gas capacity in depleted gas reservoirs

The top 27 depleted gas reservoirs with high cumulative production:

imization H2 Production

H₂ storage in salt caverns

Assumptions:

- Salt cavern shape
- Fracture pressure gradient (g_f): 0.016 MPa/m

H2 Geologic Storage

- Minimum pressure gradient: 0.00835 MPa/m
- Cushion gas percentage: 20%

17

H2 Production

Working gas capacity in salt caverns

- Ten potential locations to build salt caverns:
 - Top depth of rock salt layer: <1800 m; Thickness of salt layer: >122 m.

H2 Geologic Storage

- Estimation of the maximum number of salt caverns in a region:
 - The distance between two caverns is four times the diameter of the cavern.

H2 Production

H₂ storage in saline aquifers

H2 Geologic Storage

Assumptions:

- Normal pressure and temperature gradients
- H_2 storage efficiency: 10%;
- Cushion gas: H₂, 80% of total volume.

Working gas capacity in saline aquifers

The top 12 saline aquifers with large drainage areas are selected:

- Further analysis is required to check sealing strength.

Cost Estimation of H₂ Storage

- Geological site: depleted gas reservoir, salt cavern, aquifer.
- Cost estimation: capital cost and levelized cost of hydrogen storage:

H2 Geologic Storage

- Capital cost: one-time expenditure:
 - Cushion gas cost
 - Geologic site preparation cost
 - Compressor capital cost
 - Well capital cost
- Levelized cost of hydrogen storage (\$/kg): average net present cost of hydrogen storage over its lifetime:
 - Levelized total capital cost
 - Compressor operation and maintenance (O&M) cost
 - Well operation and maintenance (O&M) cost

H2 Production

H₂ Storage cost: cases summary

	Depleted gas reservoir	Salt cavern	Saline aquifer
Geological site	Watternberg field (CO)	Red Lake (AZ)	Baker dome (CO)
Storage volume underground (million ft ³)	8,200	15.5	5,602
Average depth (ft)	8,000	4,000	4,717
Average Pressure (psi)	3,479	1,732	2,057
Average temperature (F)	180	122	128
Total H ₂ storage amount (kton)	3,546	4.2	1613
Working gas percentage (%)	50	80	20
Working gas capacity (kton)	1773	3.4	323
Cushion gas amount (kton)	1773	0.8	1290

H2 101 H2 Geologic Storage Storage Optimization

H₂ Storage cost: capital costs of cases

H2 101 H2 Geologic Storage Storage Optimization

H₂ Storage cost: levelized costs of cases

H₂ Storage cost: effect of cushion gas type

H₂: 5/kg, natural gas: 2553/kg, N₂: 0.1826/kg, purification cost: 2/kg H₂.

H2 101

H2 Geologic Storage Storage Optimization

timization H2 Production

OPERATE-H₂

H2 101 H2 Geologic Storage Storage Optimization

High-fidelity simulation of H₂ geologic storage

Comprehensive Datasets of high-fidelity Simulations to optimize

- Operations Optimization
- Leakage Risk
- Cushion Gas type and volume

H2 Geologic Storage

Storage Optimization

H2 Production

Reduced-Order Models (ROMs)

Uncertain Parameters

Artificial Neural Network (ANNs)

Objectives of Interest

H2 101

H2 Geologic Storage

Storage Optimization

OPERATE-H₂: Features and Functionalities

- Performance Evolution: visualize UHS performances across cycles.
- Local Sensitivity Analysis: study individual parameter impact on UHS.
- Uncertainty Quantification: identification of key UHS influencing factors with tornado plots
- Global Sensitivity Analysis: a comprehensive view of geologic and operational parameter interactions.
- Site Selection: identify the most promising sites for UHS operations

H2 101 H2 Geologic Storage Storage Optimization

Evolution of UHS Performances Over Cycles

Efficiency:

• Improves across cycles.

Hydrogen Purity:

- Aquifers: High purity standards.
- Depleted Gas Reservoirs: Risk of contamination

Water Production:

- Aquifers: High water production
- Depleted Gas Reservoirs: Lower water production

Uncertainty Quantification on UHS parameters

H2 Geologic Storage

Withdrawal Efficiency

• Depth, permeability, and PINJ.

Hydrogen Purity

H2 101

• PINJ, permeability, water saturation, reservoir depth.

Injection Capacity

• Depth, formation thickness, permeability.

Water Production

• Depth, thickness, permeability, net-to-gross ratio, and PINJ.

Storage Optimization

H2 101

H2 Geologic Storage

Storage Optimization

H2 Production

- 0

谷

Site Screening - Depleted Gas

Withdrawal Efficiency

Hydrogen Purity

Injectivity

Water Production

State	Basin	Field	Formation	Depth	Thickness	Porosity	Permeability	Geothermal Gradient	Water Saturation
	Anadarko	Arapahoe	Morrow	1641.3	222.5	0.133	50.60	-	-
Calarada	do Denver- Julesburg San Juan	Wattenberg	Greenhorn	2859.8	71.5	0.09	2	-	0.30
Colorado			Lyons	2639.0	122	0.172	7.84	0.043	-
		Ignacio Blanco	Dakota	2484.7	122	0.23	370	-	0.51
Montana	Williston	North Buffalo	Red River	2742.5	29.56	0.2	8	0.036	0.38
New	San Juan	Basin	Dakota	2251.9	16.5	0.2	400	0.03	0.4
Mexico		Blanco	Tocito	2317.7	15.24	0.15	52.5	-	0.36
Wyoming	Big Horn	Cottonwood Creek	Tensleep	3352.8	22.86	0.16	425	-	-
	State Colorado Montana New Mexico Wyoming	StateBasinColoradoDenver- JulesburgSan JuanWillistonNew MexicoSan JuanNew MexicoSan JuanWyomingBig Horn	State Basin Field Anadarko Arapahoe Denver- Julesburg Wattenberg San Juan Ignacio Blanco Montana Williston North Buffalo New Mexico San Juan Basin Blanco Blanco Blanco Wyoming Big Horn Cottonwood Creek	State Basin Field Formation Anadarko Arapahoe Morrow Denver- Julesburg Matenberg Greenhorn San Juan Ignacio Blanco Dakota Montana Williston North Buffalo Red River New Mexico San Juan Basin Dakota Basin Dakota Blanco Tocito Wyoming Big Horn Cottonwood Creek Tensleep	StateBasinFieldFormationDepthAnadarkoArapahoeMorrow1641.3Denver- JulesburgWattenbergGreenhorn2859.8Lyons2639.0San JuanIgnacio BlancoDakota2484.7MontanaWillistonNorth BuffaloRed River2742.5New MexicoSan JuanBasinDakota2251.9BlancoTocito2317.7WyomingBig HornCottonwood CreekTensleep3352.8	$ \begin{array}{c c c c c c c } \hline State & Basin & Field & Formation & Depth & Thickness \\ \hline \\ \begin{tabular}{ c c c c } \hline State & Anadarko & Arapahoe & Morrow & 1641.3 & 222.5 \\ \hline Denver- & Wattenberg & Greenhorn & 2859.8 & 71.5 \\ \hline \\ \begin{tabular}{ c c } \hline Denver- & Wattenberg & Lyons & 2639.0 & 122 \\ \hline \\ \begin{tabular}{ c c } San Juan & Ignacio Blanco & Dakota & 2484.7 & 122 \\ \hline \\ \end{tabular} & Montana & Williston & North Buffalo & Red River & 2742.5 & 29.56 \\ \hline \\ \end{tabular} & San Juan & Basin & Dakota & 2251.9 & 16.5 \\ \hline \\ \end{tabular} & Bianco & Tocito & 2317.7 & 15.24 \\ \hline \\ \end{tabular} & Wyoming & Big Horn & Cottonwood \\ \hline \\ \end{tabular} & Tensleep & 3352.8 & 22.86 \\ \hline \end{array} $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	StateBasinFieldFormationDepthThicknessPorosityPermeabilityGeometrian GradientColoradoAnadarkoArapahoeMorrow1641.3222.50.13350.60-Denver- JulesburgWattenbergGreenhorn2859.871.50.092-San JuanIgnacio BlancoDakota2484.71220.1727.840.043MontanaWillistonNorth BuffaloRed River2742.529.560.280.036New MexicoSan JuanBasinDakota2251.916.50.24000.03MyomingBig HornCottonwood CreekTensleep3352.822.860.16425-

OPERATE H2

LOS Alamos

OPtimization, Evaluation, and Risk Assessment TEchniques for Hydrogen Energy (OPERATE - H2)

H2 101 H2 Geologic Storage H2 Optimization H2 Production

H₂ production methods using natural gas and coal

Fossil fuel	Production method	H ₂ Production (kg H ₂ /kg fuel)	CO ₂ footprint (kg CO ₂ /kg H ₂)	
Natural gas	Steam methane reforming (SMR)	0.26-0.29	9.4-11.4	
	Auto thermal reforming	0.31-0.35	8.4-11.0	
	Pyrolysis	0.22-0.25	1.8-4.9	
Coal	Surface Coal Gasification (SCG)	0.06-0.15	16.4-23.4	
	Underground Coal Gasification (UCG)	0.04-0.12	17.1-35.6	

H2 101

Cost Estimation – Assumptions

• The lifetime of a H_2 production plant is 25 years. The discount rate and inflation factor are 7% and 2.5%, respectively.

Storage Optimization

H2 Geologic Storage

- The H_2 production capacities of SMR, SCG, and UCG plants are 63, 0.1, and 0.2 million tons/year.
- The financial year is 2022 and the currency is the US dollar.
- The capacity of CO_2 injection well is 1 million tCO_2 /year and the pressure of CO_2 in pipelines is 9 MPa.
- CO₂ is assumed to be stored in underground storage formations at an average depth of 1,500 m below the surface.
- The captured CO_2 is either stored underground for CO_2 sequestration or converted to formic acid for CO_2 utilization. Pipelines are required for sequestration. Formic acid plants are built near CO_2 capture sites.

Potential H₂ production from natural gas (SMR) and cost

H2 Geologic Storage

H2 101

H2 production (million ton)	
• <1	
• 1~5	
>5	
1. North Park	9. Uinta
2. Anadarko	10. Powder River
3. Central Basin Platform	m 11. Paradox
4. Big Horn	12. Piceance
5. Northwest Shelf	13. San Juan
6. Williston	14. Green River
7. Raton	15. Denver
8. Wind River	16. Delaware

Storage Optimization

H2 101 H2 Geologic Storage H2 101 H2 Geologic Storage H2 Geologic Storage H2 Geologic Storage

Cost estimation of H₂ production using SMR

H2 101 H2 Geologic Storage H2 Of H2 Production H2 Geologic Storage H2 Geologic Storage

Potential H₂ production from coal (SCG) and cost

H2 101 H2 Geologic Storage H2 101 H2 Geologic Storage H2 Production H2 Production

Cost estimation of H₂ production using SCG

Cost estimation of H₂ production using UCG

Reuse of Produced Water in the I-West Region

H2 Geologic Storage

Storage Optimization

Reuse of PW

H2 101

- - -

H2 Geologic Storage

Storage Optimization

Potential H₂ Hub Sites

H2 101

os Alamos.

- R2: Denver-Julesburg
- R3: Green River-Overthrust
- R4: San Juan
- R5: Paradox
- R6: Powder River
- R7: Uinta
- R8: Black Thunder
- R9: North Antelope Rochelle
- H₂ Storage Sites:
- H1: Indian
- H2: Wattenberg
- H3: Anschutz Ranch East
- H4: Eumont-Jalmat
- H5: Blanco (Mesaverde)
- H6: Basin (Dakota)
- H7: Paradox H8: Red Lake
- H9: Luke
- H10: Wyoming Thrust Belt

- H2 Production Sites
- + H2 Storage Sites
- Densely Populated Regions
- CO2 Sequestration Sites
- Densely Populated Regions:
- P1: Phoenix (Maricopa)
- P2: Albuquerque (Bernalillo)
- P3: Denver (Denver)
- P4: Salt Lake City (Salt Lake)
- CO₂ Sequestration Sites:
- S1: Green River-Nugget2
- S2: Wyoming Thrust Belt-Tensleep4
- S3: Wyoming Thrust Belt-Tensleep5
- S4: Williston-Red River2
- S5: Green River-Nugget1
- S6: Permian-Canyon4
- S7: Uinta-Morrison7
- S8: San Juan-Morrison2

Thank You!! Mzm@lanl.gov and Eric.Guiltinan@lanl.gov

