

Seminar Series

June 7, 2023

LA-UR-23-26099

I-WEST provides Intermountain West states with data, tools, and information for energy transition planning

- Place-based approaches focus on the unique geographical, environmental, and demographic attributes of the region
- Technology-neutral approach leverages opportunities across numerous symbiotic energy economies
- Integrated approaches to assessing technology readiness in tandem with societal readiness for a just and equitable energy transition
- Community engaged research and coalition building to encourage regional partnerships

TODAY'S SEMINAR

Pathways to CO₂ Utilization and Storage for the Intermountain West Region

Dr. Derek Vikara

National Energy Technology Laboratory

Featuring data and key findings from the I-WEST Phase One report

Dr. Bailian Chen

Los Alamos National Laboratory

Please enter your questions in the chat and stay on for Q&A at the end.

iwest.ora

Overview of the Pathways to CO₂ Utilization and Storage for the Intermountain West Region

I-WEST Seminar Series June 7, 2023

Derek Vikara¹ and Bailian Chen²

¹National Energy Technology Laboratory (NETL), NETL support contractor ²Los Alamos National Laboratory

I-WEST Team

I-WEST Overview: the Road To Carbon Neutrality in the Intermountain West

Objectives

- Develop a regional, stakeholder-informed technology "roadmap" for a sustainable and equitable transition to carbon neutral.
- Facilitate regional coalitions to implement and deploy the roadmap.

Place-based Approach

- Prioritize regional attributes and societal readiness first and technologies second.
- Explicitly consider the non-technological aspects of a region—policy landscape, revenue and jobs, workforce, equity, and energy and environmental justice.
- Consider the interplay of multiple technology pathways that support the growth of symbiotic economies.

Phase I Final Report Available Online

https://iwest.org/phase-one-final-report/

Report Summary

This summary presents our findings to a broad range of stakeholders with shared interest in planning for energy transition. It is a distillation of the extensive research and analyses conducted by the I-WEST team on the scientific underpinnings of regionally relevant technology pathways examined in Phase One, as well as the economic, workforce, policy and energy justice factors that were considered. The accessible nature of this report aligns with our place-based approach and is intended to provide readers with a high-level overview of our outcomes. Unabridged versions the chapters in this summary are provided below for a more in-depth look at our Phase One outcomes.

DOWNLOAD 📩

LISTEN

Detailed Chapters

In Phase One, the I-WEST team laid the foundation for a regional roadmap that models various energy transition scenarios, including the intersections between technologies, climate, energy policy, economics, and energy, environmental, and social justice. These chapters present research led by an I-WEST partner on one or more of these focus areas. Please send an email to iwest@lanl.gov to request a PDF copy of a detailed chapter.

- Regional Overview
- CO₂ Point Source Management
- Direct Air Capture
- CO₂ Storage and Utilization
- Certification for Decarbonization Technologies
- Hydrogen Supply
- Hydrogen Demand
- Bioenergy
- Low-carbon Electricity
- Energy, Environmental and Social Justice
- Policy
- Economic Impacts
- Workforce Impacts
- Workforce Case Study: Four Corners
- Workforce Case Study: Powder River Basin

Carbon Capture, Utilization, and Storage (CCUS) Overview

iwest.org

CAPTURE Capturing CO, from industrial and energy-related processes.

TRANSPORT

Transporting CO, by pipeline.

STORAGE

1. CO₂-EOR. 2. Dedicated storage.

- USE
- Feedstock for fuels. chemicals. and materials.

Benefits of CCUS

- Value chain component technologies are largely matured. \checkmark
- Offers deep decarbonization potential for power and industrial point sources.
- Critical technology for achieving net-zero pathways. \checkmark
- Has linkages with emerging industries such as hydrogen, bioenergy, and atmospheric CO₂ removal.

Regulating CCUS in the U.S.

- U.S. EPA enforces regulations associated with CO₂ injection in the subsurface under its Underground Injection Control (UIC) Program.
- UIC sets minimum technical criteria for the permitting, site characterization, corrective action (if necessary), financial responsibility, well construction, operation, monitoring, well plugging, post-injection site care (PISC), and site closure for the purposes of protecting underground sources of drinking water.

Picture from the Alberta Energy Regulator Website: https://www.aer.ca/providing-information/by-topic/carbon-capture

Enabling Mechanisms for CCUS

iwest.org

CCUS Is Ramping Up in the I-WEST Region

For project-level info: https://iwest.org/current-regional-initiatives/

CCUS Examples From the I-WEST Region

Red Hills Acid Gas Facility

Lucid Energy Group

Red Hills V gas processing facility in Lea County, New Mexico -capacity of 230 MMcf/d

Facility compresses and injects H_2S and CO_2 concentrations in the raw sour gas it receives into the facility.

- 87% CO₂ / 12% H₂S mixture.
- UIC Class II wells.
- MRV plans in place for tracking stored volumes.
- 45Q tax credits improve economics.
- Storage reduces Lucid's overall carbon footprint.

CarbonSAFE Wyoming University of Wyoming Phase I Phase II Phase III Phase V Integrated CCS Storage Complex Site Characterization Permitting and Operation & Feasibilty Construction Commercialization Pre-Feasibilty and CO2 Capture Assessment of Storage Complex

• Project aims to characterize storage targets for CO₂ captured from the **Basin Electric Power Cooperative's 483megawatt coal-based Dry Fork Station** in Gillette, Wyoming.

• Determining if potential CO₂ storage zones and caprocks exist to safely accommodate and permanent store CO₂ on a scale of **upwards of 50+ million tonnes of CO₂.**

CO₂ storage and transportation opportunities identified within 25 miles of the Dry Forks Station

Image from CUSP website: <u>https://www.cuspwest.org/wp-</u> content/uploads/2022/08/Lucid-Energy-Group-Red-Hills-AGI-Overview.pdf

I-WEST CO₂ Emissions and Reduction Pathways

I-WEST CCUS Pathway Assessment Objectives

Evaluate the opportunity for <u>CCUS</u> to deploy at significant scale in the I-WEST region.

- 1. Identify regionally relevant opportunities and roadblocks given regionally relevant attributes.
- 2. Mitigate perceived technical/business risk with critical insight to promote widespread adoption.
- 3. Emphasize how projects are blending technology and policy support to create positive regional economic benefits.
- 4. Outline next steps to facilitate further deployment.
 - Consider synergies of existing power and industrial economies.
 - Identify research gaps and needs.

iwest.ora

 Support alignment of CCUS with new and emerging economies related to hydrogen, bioenergy, and direct air capture (DAC).

Multiple configurations exist across the CCUS value chain.

9

Process for Gaining "Place-Based" Insight

Workshops: discussions with regional stakeholders

- State/tribal-level outreach workshops.
- Technical roundtable.
- Socio-economic and policy roundtable.

iwest.ora

Group discussions with multi-state stakeholder team to formulate vision for assessing CCUS opportunity

- SWOT analysis.
- Gap assessment.

<section-header><image><image><image><image>

Regional deployment outlook and economic assessment with mature CCUS analysis tools

- **NETL:** CO₂ storage, transport, and CO₂-EOR economic models.
- LANL: SimCCS model.

CCUS in the I-WEST: SWOT

Strengths Weaknesses CCUS is a high TRL technology. Slow UIC Class VI permitting process, particularly for states/tribes without primacy. Ample regional geologic storage potential. • Expensive technology requiring large investment. • CO₂ pipeline networks exist and are expanding. • Uncertainty in CCUS policy landscape. • Favorable policy progress and more being made. **Opportunities Threats** • Lack of public and social acceptance. • Evolving policy broadens opportunity (BIL, IRA - 45Q expansion, LCFS, Class VI primacy). Acceleration of fossil-plant shuttering. • Early-mover business cases exist (CO₂-EOR, acid gas No expansion of 45Q or eligibility window. injection).

• Produce/treat brine to augment water supply.

11

- Federal or state-based leasing restrictions.
- Pressure issues if operations are not well managed.

Assessing the Implications of CCUS Deployment in the I-WEST

- Does sufficient, low-cost storage capacity exist within the region to deploy CCUS at scale?
- What percent of existing I-WEST point CO2 emissions could regional geology accommodate?
- Does reserve storage capacity exist and should CO₂ volume requiring storage increase over time?
- What <u>magnitude of projects</u> (and where are favorable geologic targets) need to be deployed based on the CO₂ volume to be managed?
- What is the <u>size of the pipeline network</u> required to connect capture point sources with viable geologic storage?
- What are the **workforce implications** given an emerging regional CO₂ economy in which CCUS plays a central role?

Tools Used To Analyze Regional CO₂ Storage Opportunities

Analytical framework applied leverages mature analysis tools with relevant geologic data.

Analytical Domain	CCUS Tool	
Saline storage capacity and cost evaluation	FECM/NETL CO ₂ Saline Storage Cost Model ¹	
CO ₂ -EOR capacity and cost evaluation	FECM/NETL Onshore CO ₂ -EOR Evaluation System ^{2,3}	

2 - https://netl.doe.gov/energy-analysis/search?search=CO2ProphetModel

NEST

iwest.ora

3 - https://netl.doe.gov/energy-analysis/search?search=OnshoreCO2EORCostModel

Perspective on CO₂ Storage in the I-WEST

- Cost implications and capacity are evaluated under four distinct modeling scenarios.
- Each scenario reflects a favorable incremental change to storage-related technical, policy, or operational conditions from the baseline scenario.
- Notable factors adjusted ٠ (Morgan et al., 2022):
 - PISC duration.
 - Financial responsibility instrument.
 - Number of sites evaluated prior to selection.
 - Permitting timeframe.
 - Oil market price.

Results using the FECM/NETL Onshore CO₂-EOR Evaluation System and NETL/FECM CO₂ Saline Storage Cost Model w/ imposed capacity constraints as proposed by Teletzke et al., 2018.

Three "policy development" cases run to evaluate effects on storage costs.

Teletzke, G., Palmer, J., Drueppel, E., Sullivan, M., Hood, K., Dasari, G., and Shipman, G. 2018. Evaluation of Practicable Subsurface CO₂ Storage Capacity and Potential CO₂ Transportation Networks, Onshore North America. 14th International Conference on Greenhouse Gas Control Technologies. Melbourne, Australia

Morgan, D., Guinan, A., Warner, T., Vikara, D. and Vactor, R.T. 2022. Intermountain West Energy Sustainability & Transitions Initiative: NETL/FECM Model and Analysis Approach Overview. National Energy Technology Laboratory. Pittsburgh, PA. (pending release)

CO₂ Supply Curve – Based on Point Source Characteristics

Cumulative Annual CO₂ Emissions (million tonnes)

* Note: supply curve shows all sources within region, of which ~90% are 45Q compliant.

SimCCS Determines the Costs and Optimized Pipeline Routing by Integrating Factors Across the CCS Value Chain

iwest.org

Initial Scenarios of CCUS Deployment in I-WEST Assuming a Single Phase of Pipeline Buildout

- Scenario 1 CO₂ storage in saline formations without restricting passage of pipelines through disadvantaged communities.*
- Scenario 2 CO₂ storage in saline formations while restricting passage of pipelines through disadvantaged communities.
- Scenario 3 CO₂ storage in saline and via CO₂-EOR while restricting passage of pipelines through disadvantaged communities.

Assumptions:

- Limited only to the I-WEST sinks.
- No dynamic evolution of sources.

* The definition of "disadvantaged communities" used in this study is based on the US-DOE Justice40 definition given at: https://www.energy.gov/diversity/justice40-initiative

Optimized Pipeline Network for Three Initial Scenarios

Saline storage only;

pipelines avoid

Saline storage only; no environmental justice considerations.

Saline storage and CO₂-EOR; pipelines avoid disadvantaged communities.

Pipeline Routing That Avoids Disadvantaged Communities Increases Pipeline Costs by \$0.05 per Tonne of Stored CO₂

	Scenario				
Economic Results	Scenario 1: Saline storage without DC restriction	Scenario 2: Saline storage with DC restriction	Scenario 3: Saline + EOR storage with DC restriction		
Total Captured CO ₂ (million tonnes/year)	219.5	219.5	219.5		
Optimized Pipeline Length (miles)	4,882	5,433	6,836		
Weighted Average Cost for CO ₂ Capture (\$/tonne CO ₂)	46.87	46.87	46.87		
Pipeline Construction Cost (\$/tCO ₂)	0.11	0.16	0.20		
Net Storage Cost (\$/tCO ₂)	2.52	2.84	-29.76		

Assessed the Changes To the Pipeline Network if the Buildout Occurs in Multiple Stages

- Evaluated under four distinct phases, where each phase spans five years and reflects the incremental scale-up of CCUS deployment in the region over time.
- The volume of CO₂ assumed captured and stored in each phase includes 50, 100, 150, and 219.5 million tonnes/year, respectively.
- CO₂ sinks: saline reservoirs and CO₂-EOR fields.
- Pipeline routing considers disadvantaged communities.

west.ord

Phase-based Pipeline Network Outlook in the I-WEST

Pocult Output	Buildout Phase			
Kesult Output	Phase 1	Phase 2	Phase 3	Phase 4
Capturable amount (million tonnes/year)	50	100	150	219.5
Pipeline length (miles)	3,447	4,010	5,278	6,601
Weighted average unit capture cost (\$/tonne CO ₂)	\$28.37	\$37.17	\$40.11	\$46.87

WEST

iwest.org

Observations From Pipeline Transport Modeling

- Analysis results suggest new pipeline infrastructure needs on the order of 4,882 to 6,836 miles to connect I-WEST sources to regional storage options.
- With environmental justice considerations applied, pipeline networks grow in length (11% longer) to avoid surface crossings across disadvantaged communities and tribal land. Net costs increase by ~\$0.05 per tonne of stored CO₂.
- The inclusion of CO₂-EOR as storage options increases the pipeline needs in the region.
 - The total potential pipeline network length would be significantly longer, on the order of 1,400 miles, when CO₂-EOR fields are included as storage options.
- Phase-based CCS infrastructure: the volume of new pipeline needed under each phase grows rapidly from 3,447 miles in Phase 1 to over 6,600 miles by Phase 4; regional weighted average unit capture cost increases over time (i.e., capture occurs initially at the lowest-cost sources).

Calls To Action: Accelerating CCUS Deployment in the I-WEST

Technical and Cost

- Pre-investment in CO₂ transport and storage capacity as strategic infrastructure.
- Improve certainty of storage capacity with containment to identify "shovel-ready sites" for rapid project deployment.
- Reduce seismic survey costs to improve economics for characterization and monitoring.
- Scoping multiple prospective storage sites for projects.
- Elevation of all CCUS technology up the TRL scale via R&D, investment, and early-mover projects.

Policy

- Financial / tax incentives and policies to drive private investment.
- State-level polices for pore space ownership and ownership transfer; applicable to produced brine.
- Rules for CO₂ ownership and longterm liability.
- State Primacy for UIC Class VI wells.
- Sufficient staffing and resources to evaluate permit applications and perform project oversight.
- Supportive policies for CO₂ transport and storage on federal and state lands.
- Market development via state/federal procurement programs, portfolio requirements, and mandatory power purchase or offtake agreements.

Outreach / Societal

- Well-planned, early engagement with stakeholders and community to educate as well as understand and address concerns.
- Outreach for all social levels; provide insight into benefits and risks of low-carbon solutions.
- Identify, develop, and promote "early-win" projects to show CCUS feasibility and economic and environmental benefits.
- Overcome perceived human capital deficit required to plan, permit, and oversee projects.

Summary and Conclusions

I-WEST is well equipped to pioneer region-wide lowcarbon/energy transition with CCUS playing a major role.

- Ample storage capacity to abate bulk of existing and expanding point source fleet.
- Uncertainty regarding Class VI rules implementation remains.
 - Reductions in PISC, monitoring rigor, and financial assurance may improve cost.
 - Clarity is needed in pore space ownership and liability transfer to reduce business risk.
- Existing pipeline network needs to be supplemented for large-scale deployment.

west.ord

24

Summary and Conclusions

CCUS pathway(s) I-WEST analysis also includes the following:

- CCUS overview, business case configurations, and technology benefits and challenges.
- Workforce implications.
- CCUS assessment in regions proximal to I-WEST.
- State-level geologic resource deep dives (in development).

CCUS is only one aspect of the larger I-WEST effort that more broadly discusses the following pathway impacts:

- Environmental/social justice.
- Workforce and revenue.

iwest.org

• Stakeholder-specific priorities and perspectives.

Project Contributors

Contributing team includes members from participating national labs and four regional universities

Disclaimer

This project was funded by the Department of Energy, National Energy Technology Laboratory an agency of the United States Government, through a support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Questions / Comments

Contacts: derek.vikara@netl.doe.gov; bailianchen@lanl.gov

I-WEST

Thank you for participating!

A recording of this seminar will be available on the I-WEST website at www.iwest.org

Join us for the next seminar

Wednesday, June 21 "Certification for CO₂ Sequestration" with Dr. Stephanie Arcusa, Arizona State University